1. A 60.0 g tennis ball approaches a racket at $25.0 \mathrm{~m} / \mathrm{s}$, is in contact with the racket for 0.00500 s , and then rebounds at $35.0 \mathrm{~m} / \mathrm{s}$. Find the average force that the racket exerted on the ball.
2. A 70 kg man stands on a Newton scale in an elevator. What does the scale read when the elevator is
a) ascending at a constant velocity of $2.0 \mathrm{~m} / \mathrm{s}$,
b) ascending at a constant acceleration of $1.0 \mathrm{~m} / \mathrm{s}^{2}$,
c) descending at a constant velocity of $2.0 \mathrm{~m} / \mathrm{s}$,
d) descending at a constant acceleration of $1.0 \mathrm{~m} / \mathrm{s}^{2}$, and
e) in free fall because the cable has broken?
3. A wire is attached to two poles 30.0 m apart such that there is no sag in the wire . A 4.00 kg bird lands and perches itself in the middle of the wire resulting in the wire sagging 0.200 m below each end. Determine the magnitude of the tension in the wire. You'll need to assume a negligible mass for the wire resulting in zero sag before the bird landed.
4. A 5.00 kg object and a 3.00 kg object are suspended by a rope on either side of a frictionless pulley. What is the acceleration of each object?
5. How much force is required to push a 10 kg box up a ramp that is inclined at an angle of 16° to the horizontal so that it has an acceleration along the ramp of $0.80 \mathrm{~m} / \mathrm{s}^{2}$? The force of friction between the box and the ramp is 20 N .
