TOOLS, COMPUTER SOFTWARE AND TECHNOLOGY

- Are central to instruction and are used to improve and deepen understanding;
- Are used to discuss mathematical relationships, concepts and ideas; and
- Are used to provide a model for complex concepts.
- Provide opportunities for understanding, consolidation and practice;
Are used by students to solve problems and apply skills, and
- Enable students to develop communication in mathematics through visual representation.

[^0]
Mathematics

reveals patterns, order and relationships which help us to understand the world around us. It is an increasingly varied discipline that deals with number, spatial sense, data, measurement, and observations requiring inference, deduction, modeling and communication. Numeracy is the application of mathematical concepts and procedures in a variety of contexts. It is interdisciplinary
as it uses mathematics
as a tool to explore problems and situations throughout the curriculum and every day life.

The Toronto District School Board identifies the teaching and earning of mathematics as a priority and is committed to providing support so that all learners achieve the highest academic levels.
(Taken from TDSB Mathematics oundation Statement P. 004 CUR)

The Effective Mathematics Classroom Environmen

- Both seachers and students demonstrate a positive attitude towards mathematics

Is a safe, supportive and respectul classroom
High expectations are held by teachers and students
rovides colluns are hela by leachers and student
Student mathematical thinking and learning is evident and posted
Student generated work and/or co-constructed with the teacher are posted and clearly defined Students have easy access to and choice of learning tools, mathematics resources and technologies Includes activites and resources that are inclusive and reflect the needs of students with
varying backgrounds, abilities, interests and learning styles
Professional Learning in Mathematics

Teachers engage in collaborative professional learning, such a

Co-planning	Self-directed Professional
Co-teaching	learning communities
Lesson study	her moderation
- Inquiry	- Professional Learning Team
- Modular learning	- Book Study
	- Demonstration Classroom visis

Teachers study relevant topics such as:

- Engaging students in relevant challenging mathematics

Current pedagogy in mathematics e.g. three-part lesson, teaching through
Mroblem-Sonif, Bansho,
Math content for teaching;
The use of the tectnoconinuum of math concepts and skills;
Effective assessment tools and strategies forn mathematics teaching $\&$ learning

The Learning Destination for All Students in Mathematics

Successful planning and teaching enables students to consistently and independently

- Understand, remember, and apply mathematical concepts

Articulate clear understanding of mathematical concepts and ideas and give clear examples of use Apply concepts, skills, and strategies to propose solutions to problems
strategies \& processes to find solutions, and be able to check and evaluate
effectiveness of processes used

- Work effectively alone and with others

Communicate effectively using words, symbols, and
Connect ideas to self, others and other ideastlasks
解 - of language and thinking

Pa - Products e.g. work samples, tests, quizzes;

Conversation e.g. lassocsik, wittations, performance tasks, teacher observations; and

Characteristics of Mathematical Literate Students

- Can communicate their mathematical thinking and can understand the mathematical reasoning of others Have a sense of numbers and are sufficiently efficient in their work that their thinking builds as they progress towards a solution
To make sense of mathematics
Make connections between concepts and see pattern throughout mathematics
Are wiling to persectind order to understand and solve mathematical problems

COMPREHENSIVE MATHEMATICS PROGRAM

Is focused on having students make sense of mathematics
Is based on problem solving and investigation of important mathemaical concepls;
Begins with the students understanding and knowledge of the topic,

- Allows students to engage in a variety of problem solving experiences to develop conceptual and procedural understanding and skills through exploration
investigation, direct instruction and practice;
- Has students communicate and investigate their thinking through ongoing discussion;
- Includes all students, whether in the choice of problems or in the communicating of mathematical ideas;
- Includes al students, whether in the choice of problems or in the communicating of math
- Incorporates ongoing assessment of student understanding to guide future instruction;
- Allows students to develop their ability to ask questions and to plan investigations to answer these questions;
- Enables students to spend most of their time working in partners or small groups to explore and learn concepts, complete tasks, represent, justify and consolidate their thinking;
- Engages students in investigations or questions prompted by literature or a topic in other subject areas;
- Includes opportunities for students to apply math knowledge and skills in other subject areas
- Uses optimal groupings to encourage collaborative discourse and critical thinking.

INSTRUCTIONAL STRATEGIES IN MATHEMATICS

- Are used within a three part lesson framework;
- Are based on a problem solving or investigation approach, , exploration, investigation, direct instruction, and practice;
- Incorporate effective Literacy strategies;
- Promote students thinking about the big ideas in mathematics through an inter-strand approach;
- Are set within a rich context;
- Allow students to communicate and justify thinking and strategies;
- Allow for differentiated learning within flexible groupings.

Strategies for Thinking and Consolidation

Gallery Walk

- Students and teachers circulate to examine student recorded solutions oa a lesson problem
Students read solutions and give oral and written feedback
Teachers assess the range of mathematical thinking in the different solutions
Teachers use the information to determine the focus of consolidatio and next steps for planning

Two or three student solutions are used to conduct a whons discussion that will develop every student's mathematica thinking Teachers use student solutions to prompt them to reason about big math ideas
Specific ideas and strategies are generalized and connections made to previous math discussions and learning
Students defend and support their solutions and thinking
Teachers use questioning to prompt
all students to reason and generalize based on the lesson goals

Math Congress
Math Congress

Bansho

Means board writing in Japanes Math thinking is organized and recorded as it occurs in the less diagrams, solutions and strategies diagrams, solutions and strategies are recorded for al to engage in
Various solutions are organized and compared through teacher and student questioning
Students deepen their mathematical thinking through comparing generalizing and summarizing

Adapted from: Communication in the Mathematics Classroom, Special Edition \#13 Literacy and Numeracy Secretariat

COMPONENTS	K-2	3-5	6-9	10-12
Assessment for and As Learning	- Learning Goals	- Learning Goals	- Learning Goals	- Learning Goals
	- Success Criteria	- Success Criteria	- Success Criteria	- Success Criteria
	- Descriptive feedback	- Descriptive feedback	- Descriptive feedback	- Descriptive feedback
	- Student interviews	- Student interviews	- Student interviews	- Student interviews
	- Observational data	- Observational data	- Observational data	- Observational data
	- Student work (oral, written	- Student work (oral, written)	- Student work (oral, written)	- Student work (oral, written)
	representations) - Student models	- Student models using manipulatives	- Student models using manipulatives	- Student models using manipulatives
	using manipulatives	- Exit Cards	- Exit Cards	- Exit Cards
		- Reflective Journals	- Reflective Journals	- Reflective Journals
Data Collection Methods		- Peer and self assessment items	- Peer and self assessment items	- Peer and self assessment items
		- Portfolio	- Portfolio	- Portfolio
		- Peer editing	- Peer editing	- Peer editing

\downarrow

DESCRIPTOR

An examination of student work with colleagues to compare inter pretations of student results, and confirm judgments about levels of achievement.

eer and Self

Assessment

Assessment of student work or learning processes by self or classmates using the establishe success criteria.

LOOK FORS

Professional learning is focused on student work and taking student(s) to the next level of learning;
Structural regular opportunities to examine student work collaboratively in the classroom setting;
Calibrate standards of expectations and practice among teachers within and across grades;
Develop school-wide beliefs, values and practices that support students well being and success; and
difference that makes the difference or their students. for their students.

Students have regular and structura opportunities to speak to each other about their progress and their work; about their progress and their work;
Students can describe what succes Students can describe what success
looks like based on set criteria; and looks like based on set criteria; and
Students have a clear understanding and can articulate why they are learning, what and how they are learning
earning Goals
ess Crieria
feedback
Student interviews
Student work (oral,
written)
Sunt
Exit Cards
Reflective Journals
Peer and self

- Portfolio

Peer editing

10-12

-

Descriptive feedback

- Student interviews Observational dat written) Sudent models Exit Cards - Reflective Journa assessment item - Peer editing
\qquad
- ongoing assessment
- demonstrates what students already know
- informs instruction that is differentiated and personalized - monitors students progress
- ongoing self and peer assessment
- provides feedback from students to other students
- informs students of their own learning styles/preferences
- allows for individualized goal setting

COMPONENTS	DESCRIPTOR	LOOK FORS
Student Work	- Through facilitated discussions with students and teacher moderation of student work, teachers assess student learning, plan and provide feedback, and adjust instruction.	- Student work used to share strategies and solutions, consolidate learning, prompt mathematical communication; - Student work samples guide professional learning and decision making.
Learning Goals	- What students should be able to do by the end of a period of instruction (e.g. a lesson, series of lessons, or subtask).	- Founded on overall curriculum expectations and big ideas in mathematics; - Stated in clear language.
Success Criteria	- A description of successful attainment of the learning goals that shows what success "looks like". - Success criteria are used to guide descriptive feedback that informs the next level of teaching and learning.	- Co-constructed between teachers and students; - Observable in the classroom; - Accessible to students for reference and scaffolds their learning and why; - Describes what success looks like without showing students which solutions or strategies to use; - Based on expectations for performance as stated in all four areas of the achievement chart.
Rich Assessment Task	- Authentic activity, exercise, problem or challenge that requires students to show what they know and can do. This task will address all four categories of the achievement chart.	- Addresses all four categories of the achievement chart; - Includes multiple overall curriculum expectations; - Provides flexibility in how students can demonstrate their learning (written, oral, construction).
Precise and Differentiated Instruction	- Teaching and learning experiences that respond to the individual learning needs of students; - Instruction is adjusted based on the observations from continuous assessment of student work; - Explicit descriptive feedback is provided to students, enabling them to set appropriate learning goals and improve their achievement.	- Continuous assessment to customize teaching; - Teachers give descriptive feedback verbally and in written form to students to support next level of performance; - Students use success criteria and descriptive feedback to set personal goals and learning pathways with or without teacher's and/or peer's assistance; - Instruction is personalized with consideration for learning and social factors (ethno-culture, class, gender, etc.).

CONTINUED

Revised April 2013

LEARNING SKILLS/MATHEMATICAL PROCESSES

Central to the actions of doing mathematics;
Ways of accuiring and using the content, knowledge and skills of
mathematics
mathematics;
Linked to three
Linked to three of the categories of the Achievement Chart-Thinking,
Communication, and Application:
Communication, and Apppication;

- Knowledge and Understanding, connects to the content of each math class and course; and
Lifelong leanners of mathematics build new knowledge and skils in prior knowedge - Lifielong leannerers of mantumematicos build new knowledge and skills in prior knowledge
using mathemaical processes.

COMPONENTS	K	1-3	4-6	7-10	11-12
Problem Solving	- Children begin to develop and apply problem-solving strategies, and persevere when solving problems and conducting mathematical investigations.	- Apply developing problemsolving strategies as they pose and solve problems and conduct investigations, to help deepen their mathematical understanding.	- Develop, select, and apply, problem-solving strategies as they pose and solve problems and conduct investigations, to help deepen their mathematical understanding.	- Develop, select, apply, and compare a variety of problemsolving strategies as they pose and solve problems and conduct investigations, to help deepen their mathematical understanding.	- Develop, select, apply, compare and adapt a variety of problem-solving strategies as they pose and solve problems and conduct investigations, to help deepen thei mathematical understanding.
Reasoning and Proving	- Children apply developing reasoning skills to create and investigate possibilities	- Apply developing reasoning skills to make and investigate conjectures.	- Develop and apply reasoning skills to make and investigate conjectures and construct and defend arguments.	- Develop and apply reasoning skills to make mathematical conjectures, assess conjectures and justify conclusions, and plan and construct organized mathematical arguments.	- Develop and apply reasoning skills to make mathematical conjectures, assess conjectures, and justify conclusions, and plan and construct organized mathematical arguments.
Reflecting	- Children demonstrate that they are reflecting on and monitoring their thinkking to help clarify their understanding as they complete an investigation or solve a problem.	- Demonstrate that they are reflecting on and monitoring their thinking to help clarify their understanding as they complete an investigation or solve a problem.	- Demonstrate that they are reflecting on and monitoring their thinking to help clarify their understanding as they complete an investigation or solve a problem.	- Demonstrate that they are reflecting on and monitoring their thinking to help clarify their understanding as they complete an investigation or solve a problem.	- Demonstrate that they are reflecting on and monitoring their thinking to help clarify their understanding as they complete an investigation or solve a problem.
Selecting Tools \& Computational Strategies	- Children select and use a variety of concrete, visual, and electronic learning tools and appropriate strategies to investigate mathematical ideas and to solve problems.	- Select and use a variety of concrete, visual, and electronic learning tools and appropriate computational strategies to investigate mathematical ideas and to solve problems.	- Select and use a variety of concrete, visual, and electronic learning tools and appropriate computational strategies to investigate mathematical ideas and to solve problems	- Select and use a variety of concrete, visual, and electronic learning tools and appropriate computational strategies to investigate mathematical ideas and to solve problems.	- Select and use a variety of concrete, visual, and electronic learning tools and appropriat computational strategies to investigate mathematical ideas and to solve problems.
Connecting	- Children begin to make connections among mathematical concepts and notice examples of mathematics in their everyday life.	- Make connections among simple mathematical concepts and procedures, and relate mathematical ideas to situations drawn from everyday contexts.	- Make connections among mathematical concepts and procedures, and relate mathematical ideas to situations or phenomena drawn from other contexts.	- Make connections among mathematical concepts and procedures, and relate mathematical ideas to situations or phenomena drawn from other contexts.	- Make connections among mathematical concepts and procedures, and relate math ematical ideas to situations or phenomena drawn from other contexts.
Representing	- Children create basic representations of simple mathematical ideas, make connections among them, and apply them to solve problems	- Create basic representations of simple mathematical ideas, make connections among them, and apply them to solve problems.	- Create a variety of representations of mathematical ideas, make connections among them, and apply them to solve problems.	- Create a variety of representations of mathematical ideas, connect and compare them, and select and apply the appropriate representations to solve problems.	- Create a variety of representations of mathematical ideas, connect and compare them, and select and apply the appropriate representations to solve problems.
Communicating	- Children communicate mathematical thinking orally and visually, using everyday language, an emerging mathematical vocabulary, and a variety of representations	- Communicate mathematical thinking orally, visually, and in writing, using everyday language, a developing mathematical vocabulary, and a variety of representations.	- Communicate mathematica thinking orally, visually, and in writing, using everyday language, a basic mathematical vocabulary, and a variety of representations, and observing basic mathematical conventions.	- Communicate mathematical thinking orally, visually, and in writing, using mathematical vocabulary and a variety of appropriate representations, conventions.	- Communicate mathematical thinking orally, visually, and in writing, using mathematical vocabulary and a variety of appropriate representations, and observing mathematical conventions.

NUMERACY/MATHEMATICS BLOCK A THREE-PART FRAMEWORK

An information and technology-based society requires individuals who are able to think critically about complex issues, people who can "analyze and think logically about new situations, devise unspecified solution procedures, and communicate their solution clearly and convincingly to others"

To prepare students to function in such a society, teachers have a responsibility to promote in their classrooms the experience of
problem-solving processes and the acquisition of problem-solving strategies, and to foster in students positive dispositions towards problem solving.

Teacher Actions

- Activate students' prior knowledge - Mentally engage students in the problemsolving situation by posing a thoughtprovoking problem;
- Model tool and strategy selection as appropriate - Gather diagnostic and/or formative assessment data through observation and questioning Discuss and clarify the task, including having students restate the problem in their own words and ask questions, - Establish expectations; and - Establish a positive mathematics classroom climate.

PART ONE - GEtting started / minds on

Student Actions

- Participate in discussions
- Propose strategies;

Question the teacher and their classmates
and
Make connections to and reflect on prio
learning

PART TWO - WORKING ON IT / ACTION

Student Actions

-Participate actively in whole group, small group,
or independent settings;
Explore and develop strategies and concepts;
Select appropriate tools and strategies;

- Represent their thinking in a variety of ways;

Develop and reflect upon alternative solutions;
-Engage in metacognition; and
Communicate their understanding to their
classmates and the teacher.

PART THREE - A. REFLECT AND CONNECT / CONSOLIDATE AND DEBRIEF

Teacher Actions

Using Gallery Walk, Math Congress, Bansho to

- Facilitate whole class discussion and sharing by: \checkmark bringing students back together to share and analyse solutions and address misunderstandings or confusions:
$\sqrt{ }$ encouraging students to explain a variety of solution strategies;
$\sqrt{ }$ asking students to defend their procedures and justify their answers;
\checkmark engaging all class members.
- Connect strategies and solutions to similar types of problems in order to help students generalize
concents; and
- Ask clarifying and extending questions.

Teacher Actions

- Facilitate whole class discussion and reflection by:
\checkmark probing students to summarize the discussion and emphasizing key points or concepts, i.e., "pulling out the math ",
- Record key mathematical concepts,
vocabulary, algorithms, strategies in a list; and
- Make the learning from the lesson explicit.

Teacher Actions - Provide opportunities to practice $\sqrt{ }$ skills, problem solving, visualization, communication, metacognition; - Plan the type and amount of practice based on the outcome of the lesson; and - Differentiate the type and amount of practice based on student needs.			Student Actions - Participate actively in whole group, small group, or independent settings; and - Record solutions, thinking, representations, strategies.	
	K-2	3-5	6-9	10-12
NUMERACY/ MATHEMATICS BLOCK	- Kindergarten:10-15 minutes of inquiry facilitated by the teacher - Grades1-2:30-45 minutes of inquiry and 10-15 minutes practice	- 45 minutes of inquiry and 10-15 minutes of practice	- 45-60 minutes of inquiry and 10-15 minutes of practice	- 60 minutes of inquiryand 15-30 minutes of practice

[^0]: ## CONTACT INFORMATION

 For further information, please go to TDSBweb and see Program Coordinator, Mathematics, under Contact Us

